人造地球卫星是什么?关于人造地球卫星的详细介绍

创闻科学2020-11-17 12:26:53

卫星是指在围绕一颗行星轨道并按闭合轨道做周期性运行的天然天体,人造卫星一般亦可称为卫星。人造卫星是由人类建造,以太空飞行载具如火箭、航天飞机等发射到太空中,像天然卫星一样环绕地球或其它行星的装置。人造卫星主要用于科学探测和研究、天气预报、土地资源调查、土地利用、区域规划、通信、跟踪、导航等各个领域。

基本简介

简单来说人造地球卫星是靠具有巨大推进力的巨型多级火箭送上太空,多级火箭的工作原理并不复杂,就是把几支单线火箭串联或并联在一起,构成一个大的火箭系统,其中的每一级都是一支可以独立工作的火箭,它们各自分阶段地完成飞行任务。首先是第一级火箭点火,此时整个火箭便腾空而起,当第一级的推进耗尽时,它笨重的壳体就立即被扔掉,接着第二级开始工作,此时由于甩掉了一部分已经无用的结构重量,从而使整个火箭轻装前进,再接着第二级的壳体被抛掉,第三级点火……这样一级接一级,好似接力赛一样,越跑越轻,越跑越快。直到最后一级火箭工作结束时,使装在末级火箭前端的卫星进入地球轨道,地球对周围的物体有引力的作用,因而抛出的物体要落回地面。但是,抛出的初速度越大,物体就会飞得越远。牛顿在思考万有引力定律时就曾设想过,从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也就一次比一次离山脚远,如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。1957年10月4日苏联发射了世界上第一颗人造卫星,这个卫星里的主要仪器设备是化学能电池无线电发报机。之后,美国、法国、日本也相继发射了人造卫星,中国于1970年4月24日发射了东方红1号人造卫星,截止1992年底中国共成功发射33颗不同类型的人造卫星。

人造地球卫星

人造卫星一般由专用系统和保障系统组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷,应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统,主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。

人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道、大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所遥感的面积可达几万平方千米。在卫星轨道高度达到35800千米,并沿地球赤道上空与地球自转同一方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保持不变。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星,简称静止卫星,这种卫星可实现卫星与地面站之间的不间断的信息交换,并大大简化地面站的设备。绝大多数通过卫星的电视转播和转发通信是由静止通信卫星实现的。

构成和工程系统

工程系统

通用系统有结构,温度控制,姿态控制,能源,跟踪,遥测,遥控,通信,轨道控制,天线等等系统,返回式卫星还有回收系统,此外还有根据任务需要而设的各种专用系统。人造卫星能够成功执行预定任务,单凭卫星本身是不行的,而需要完整的卫星工程系统,一般由以下系统组成:

1、发射场系统

2.运载火箭系统

3.卫星系统

4.测控系统

5.卫星应用系统

6.回收区系统(限于返回式卫星)

组成部分

卫星系统中,各种设备按其功能上的不同,分为有效载荷及卫星平台两大部分。卫星平台又分为多个子系统:有效载荷(不同类型卫星均不同,共同的有:)

1.对地相机

2.恒星相机

3.搭载的有效载荷

卫星平台(为有效载荷的操作提供环境及技术条件,包括:)

1.服务系统

2.热控分系统

3.姿态和轨道控制分系统

4.程序控制分系统

5.遥测分系统

6.遥控分系统

7.跟踪和测试分系统

8.供配电分系统

9.返回分系统(限於返回式卫星)

重力问题

从地球参考系上看,地球卫星在一般情况下所受重力大小方向不断变化且并不指向地心,卫星并非做匀速圆周运动.当卫星靠近地面运行时,其所受惯性离心力和科里奥利力较地球引力小得多,重力近似等于地球引力,卫星的运动近似匀速圆周运动。卫星离地面越远,重力与地球引力差别越大,二者不可等同。只有赤道轨道卫星才绕地做匀速圆周运动(但绕行速度与在地心—恒星系上看到的不同),向心力由大小一定(但不等于地球引力)方向总指向地心的重力提供。而同步卫星所受重力为零,相对于地球静止于空中不动,则是一种更特殊的情况。

功能用途和轨道特征

功能用途

人造地球卫星按用途可分为三大类:科学卫星、技术试验卫星、应用卫星。

(1)科学卫星

科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气、地球辐射带、地球磁层、宇宙线、太阳辐射等,并可以观察其他星体。

人造地球卫星

(2)技术试验卫星

技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星。航天技术中有很多新原理、新材料、新仪器,其能否使用,必须在天上进行试,一种新卫星的性能如何,也只有把它发射到天上去实际“锻炼”,试验成功后才能应用,人上天之前必须先进行动物试验,这些都是技术试验卫星的使命。

(3)应用卫星

应用卫星是直接为人类服务的卫星,它的种类最多,数量最大,其中包括:通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星、地球资源卫星、截击卫星等。

观测站

卫星处在轨道上,对地球来说,它站得高,看得远(视场大),用它来观察地球是非常有利的。此外,由于卫星在地球大气层以外不受大气的各种干扰和影响,所以用它来进行天文观测也比地面天文观测站更加有利。属于这种功能的卫星有下列几种典型的用途。

侦察卫星

在各类应用卫星中侦察卫星发射得最早(1959年发射),发射的数量也最多。侦察卫星有照相侦察和电子侦察卫星两种。

照相侦察卫星是用光学设备对地面目标进行拍照的卫星。前苏联和美国每年发射的军用卫星中,约有1/3的卫星用于各种形式的照相侦察,它们在近地轨道上进行普查和详查。

电子侦察卫星利用星载电子设备截获空间传播的电磁波,并转发到地面,通过分析和破译,获得敌方的情报。电子侦察的目的是确定他方的飞机、雷达等系统的位置和特征参数,窃听他方的无线电和微波通信。电子侦察卫星以无线电探测和记录设备完成这些使命。

总之,无论对军事战略侦察,还是对军事战术侦察,侦察卫星所提供的情报信息,起着不可忽视的作用,曾为美国和前苏联政策的制定和军事行动提供了依据。据报道,美国和前苏联将近70%的军事情报来源于侦察卫星。

气象卫星

气象卫星利用所携带的各种气象遥感器,接收和测量来自地球、海洋和大气的可见光辐射、红外线辐射和微波辐射信息,再将它们转换成电信号传送给地面接收站。气象人员根据收集的信息,经过处理,得出全球大气温度、湿度、风等气象要素资料。几小时就可得到全球气象资料,从而做出长期天气预报,确定台风中心位置和变化,预报台风和其它暴。气象卫星对于保证航海和航空的安全,保证农业、渔业和畜牧业生产,都有很大作用。

气象卫星已由单纯的气象试验,发展到多学科和多领域的综合应用,由低轨道系统,发展到高轨道系统,形成了全球气象卫星观测网。气象卫星在军事活动中的应用也日益加强,有的国家已建立了全球性的军事气象资料的收集系统,向军事单位提供实时的或非实时的气象资料。

随着航天技术的进一步发展,气象遥感器将向多样化、高精度方向发展,大大丰富气象预报的内容和提高预报精度。同时气象卫星提供的云图也将由静态云图向动态云图方向发展,这将会引起气象卫星发展的一次重大突破。

地球资源卫星

资源卫星是在侦察卫星和气象卫星的基础上发展而来的。利用卫星上装载的多光谱遥感器获取地面目标辐射和反射的多种波段的电磁波,然后把它传送到地面,再经过处理,变成关于地球资源的有用资料。它们包括地面的和地下的,陆地的和海洋的等等。地球资源卫星可广泛用于:地下矿藏、海洋资源和地下水源调查;土地资源调查,土地利用,区域规划;调查农业、林业、畜牧业和水利资源合理规划管理;预报农作物长势和收成;研究自然植物的生成和地貌;考查和监视各种自然灾害如病虫害、森林火灾、洪水等;环境污染、海洋污染;测量水源,雪源;铁路,公路选线,港口建设,海岸利用和管理,城市规划。地球资源卫星具有重大的经济价值和潜在的军事用途。

海洋卫星

海洋是生命的摇篮和风雨的故乡,海洋与人类的密切关系正逐渐被认识。海洋控制着自然界中水的循环和大气运动,主导调节大陆的气候,提供廉价的运输条件和高质量的水产食物。海洋中蕴藏着巨大的能源和矿物资源。

人造地球卫星

对海洋、海岸线的调查、研究、利用和开发,虽然可以利用气象卫星、地球资源卫星获得一些资料和数据,但不解决根本问题,例如资源卫星遥感器波段主要在可见光和近红外波段,而海洋遥感器波段主要在红外和微波波段。中国既是一个大陆国家,又是一个海洋国家,发展海洋卫星是国民经济和军事部门之必需。

海洋卫星的任务是海洋环境预报,包括远洋船舶的最佳航线选择,海洋渔群分析,近海与沿岸海洋资源调查,沿岸与近海海洋环境监测和监视,灾害性海况预报和预警,海洋环境保护和执法管理,海洋科学研究,以及海洋浮标、台站、船舶数据传输,海上军事活动等。当然,作为观测站的卫星远不止以上几种,预警卫星、核爆炸探测卫星、天文预测卫星等均属于这一类。虽然它们的功能各有侧重,但基本观测原理都是相似的。

中继站

中继站是一种在轨道上对信息进行放大和转发的卫星。具体分为两类:一类用于传输地面上相隔很远的地点之间的电话、电报、电视和数据;另一类用于传输卫星与地面之间的电视和数据。这种卫星有下列几种:

通信卫星

利用卫星进行通信和平常的地面通信相比较,具有下列优点:通信容量大;覆盖面积广;通信距离远; 可靠性高;灵活性好;成本低。通信卫星一般采用地球静止轨道,相当于静止在天空上。若有3颗地球静止轨道卫星,彼此相隔120度,就可实现除地球两极部分地区外的全球通信。通信卫星已用于国际、国内和军事通信业务,同时开展了区域性通信和卫星对卫星的通信。卫星通信技术已赋有很浓的军事色彩,它在战略通信和战术通信中占有绝对的优势。各国已有的国际、国内卫星通信系统都承担着军事通信任务。通信卫星已进入相当成熟的实际应用阶段,特别是随着地球静止轨道卫星通信技术的发展,它的应用日益广泛。它可用于传输电话、电报、电视、报纸、图文传真、语音广播、时标、数据、视频会议等。

广播卫星

广播卫星是一种主要用于电视广播的通信卫星。这种广播卫星不需要经过任何中转就可向地面转播或发射电视广播节目,供公众团体或者个人直接接收,因此又称为直播卫星。普通的家庭电视机配一架直径不大的天线和机顶盒就可以直接接收直播卫星的电视广播节目。

跟踪和数据中继卫星

跟踪和数据中继卫星是通信卫星技术的一个重大发展。它是利用卫星来跟踪与测量另一颗卫星的位置,其基本思想是把地球上的测控站搬到地球同步轨道上,形成星地测控系统网。这样,可大大增加对近地轨道卫星,如气象卫星、侦察卫星、资源卫星、海洋卫星、通信卫星等的跟踪测轨弧段,提高测轨精度,减少地面站的设置数量。换句话说,跟踪和数据中继卫星就是利用地球同步轨道卫星实现地面测控中心对低轨道卫星的跟踪和数据中继。

发展跟踪和数据中继卫星将改变航天活动对地面测控的过分依赖性,同时也可以克服在国外无法设置地面站的困难,所以受到了世界各航天大国的普遍重视。中国也在积极地发展这种卫星技术。

除上述各中继站卫星系统外,各国还研制和发射了其他类型的专用通信卫星和无线电业余爱好者卫星,如海事卫星,卫星商业系统、搜索和营救系统……

基准站

这种卫星是轨道上的测量基准点,所以要求对它测轨非常准确。属于这种功能的卫星有:

导航卫星

这种卫星发出一对频率非常稳定的无线电波,海上船只、水下的潜艇和陆地上的运动体等都可以通过接收卫星发射的电波信号来确定自己的位置。利用导航卫星进行导航是航天史上的一次重大技术突破,卫星可以覆盖全球进行全天候导航,而且导航精度高。

卫星导航定位有三种类型: 双频多普勒测速定位系统,如美国的“子午仪”导航卫星系统。该类卫星为两维导航定位系统,只能用于水中舰船,定位精度为30~50m。“子午仪”卫星研制始于1958年,1964年开始投入使用,起初是为水下核潜艇定位服务的,已停止使用;导航卫星全球定位系统(GPS)。采用伪随机码测距,系统能进行全天候、全天时、实时三维导航定位,定位精度10 以下,用于舰船、飞机和陆上活动目标等。该系统需要18~24颗卫星组网。俄罗斯亦有类似于美国的两代导航卫星系统;区域性导航定位系统。3颗星(静止轨道)提供三维位置。若发射两颗星则只能提供二维位置,如果用户能够提供自身的高程,则可以算出三维位置。该系统特点是同时能为百万用户服务,互不干扰,保密性好。

测地卫星

卫星测地的原理与卫星导航的原理相似。由于地面上的测量站是固定的,所以测量精度比对舰船导航定位的精度高。卫星测地达到的精度比常规大地测量的精度高几十倍以上。测地卫星可完成大地测量、地形测定、地图测绘、地球形状测量,以及重力和地磁场测定。

人造地球卫星

卫星测地在军事、科学研究和民用方面受到重视,许多国家研制和发射了测地卫星系统。利用卫星进行测地,为测绘工作提供了现代化手段,工作周期短,测量精度高,大大节省了人力、物力和财力。特别是要建立精确的全球性地理坐标系或三维地图,利用卫星测地是惟一可行的测量手段。随着科技水平的不断提高,测地卫星的应用也日益广泛,如人们利用测地卫星测量地壳移动从而监视和预报地震等。测地卫星有主动和被动之分,可采用三角测量、激光测距、多普勒系统等多种手段达到测地目的。

轨道武器

这是一种积极进攻的航天器,具有空间防御和空间攻击的职能。它主要包括:

拦截卫星

卫星作为一种武器在轨道上接近,识别并摧毁敌方空间系统,这种卫星又被称为反卫星卫星。反卫星卫星的拦截方式可以有多种,主要有:使拦截卫星在空间与目标卫星相遇,然后自爆以摧毁目标;从拦截卫星上发射反卫星武器,如激光、粒子和微波等定向高能束射武器;拦截卫星用自身携带的小型火箭助推器加速,与目标卫星相碰撞;设法使目标卫星失去工作能力,如利用核辐射击毁目标卫星的电路与结构,向目标卫星相机镜头上喷射物质等等。早在20世纪50年代末期,美国和前苏联就开始研究拦截卫星,俄罗斯已经掌握了1000km以下拦截卫星的技术,美国也在90年代成功地进行了在轨反卫星试验。

轨道轰炸系统

轨道轰炸系统是一种空间对地的进攻型武器。其任务是将武器部署在地球轨道上,当它绕地球运行到指定位置时,用反推减速火箭使其减慢速度,降低轨道,按地面指令射向目标。

轨道特征

运行轨道

人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道,太阳同步轨道,极轨轨道。

人造地球卫星

(1)地球同步轨道是运行周期与地球自转周期相同的顺行轨道。但其中有一种十分特殊的轨道,叫地球静止轨道。这种轨道的倾角为零,在地球赤道上空35786千米。地面上的人看来,在这条轨道上运行的卫星是静止不动的。一般通信卫星,广播卫星,气象卫星选用这种轨道比较有利。地球同步轨道有无数条,而地球静止轨道只有一条。

(2)太阳同步轨道是轨道平面绕地球自转轴旋转的,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000千米。在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的。气象卫星、地球资源卫星一般采用这种轨道。

(3)极地轨道是倾角为90度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面。气象卫星、地球资源卫星、侦察卫星常采用此轨道。

顺行轨道

顺行轨道的特点是轨道倾角即轨道平面与地球赤道平面的夹角小于90度。在这种轨道上运行的卫星,绝大多数离地面较近,高度仅为数百公里,故又将其称为近地轨道。中国地处北半球,要把卫星送入这种轨道,运载火箭要朝东南方向发射,这样能够利用地球自西向东自转的部分速度,从而可以节约火箭的能量。地球自转速度可以通过赤道自转速度、发射方位角和发射点地理纬度计算出来。不难想象,在赤道上朝着正东方向发射卫星,可利用的速度最大,纬度越高能用的速度越小。

中国用长征一号、风暴一号两种运载火箭发射的8颗科学技术试验卫星,用长征二号、二号丙、二号丁3种运载火箭发射的17颗返回式遥感卫星以及用长征二号F运载火箭发射的神舟号试验飞船,都是用顺行轨道。它们都是从酒泉发射中心起飞被送入近地轨道运行的。通过长征三号甲运载火箭发射的1颗北斗导航试验卫星也是采用顺行轨道。

逆行轨道

逆行轨道的特征是轨道倾角大于90度。欲把卫星送入这种轨道运行,运载火箭需要朝西南方向发射。不仅无法利用地球自转的部分速度,而且还要付出额外能量克服地球自转。因此,除了太阳同步轨道外,一般都不利用这类轨道。由于地球表面不是理想的球形,其重力分布也不均匀,使卫星轨道平面在惯性空间中不断变动。具体地说,地球赤道部分有些鼓涨,对卫星产生了额外的吸引力,给轨道平面附加了1个力矩,使轨道平面慢慢进动,进动方向与轨道倾角有关。当轨道倾角大于90度时,力矩是逆时针方向,轨道平面由西向东进动。适当调整卫星的轨道高度、倾角和形状,可使卫星轨道平面的进动角速度每天东进0.9856度,恰好等于地球绕太阳公转的日平均角速度,这就是应用价值极大的圆形太阳同步轨道。在太阳同步轨道上运行的卫星,可在相同的时间和光照条件下观察卫星云层和地面目标。气象、资源、侦察等应用卫星大多采用这类轨道。中国用长征四号火箭发射的2颗风云一号气象卫星和2颗测量大气密度的地球卫星,用长征四号2火箭发射的1颗风云一号气象卫星、1颗中国和巴西合制的资源一号卫星、1颗中国资源二号卫星、1颗实践五号科学试验卫星,都采用这种轨道。它们都是从太原发射中心升空的。长四乙火箭在发射资源一号卫星时,还用1箭双星的方式把1颗巴西小型科学应用卫星送入太阳同步轨道。

人造地球卫星

赤道轨道

赤道轨道的特点是轨道倾角为0度,卫星在赤道上空运行。这种轨道有无数条,但其中的一条地球静止轨道具有特殊的重要地位。由于卫星飞行速度随距地面的高度而变化,轨道越高,速度越小,环绕周期越长,故由计算可知,当其在赤道上空35786公里高的圆形轨道上由西向东运行1周的时间,恰好是23小时56分4秒,正与地球自转一周的时间相同,这条轨道就被称为地球静止轨道。因为卫星环绕周期等于地球自转周期,两者方向又一致,故相互之间保持相对静止。

从地面上看,卫星犹如固定在赤道上空某一点。在静止轨道上均匀分布3颗通信卫星即可进行全球通信的科学设想早已变为现实。世界上主要的通信卫星都分布在这条轨道上。有的气象卫星、预警卫星也被送入静止轨道。中国用长征三号火箭先后发射了1颗试验卫星、5颗东方红二号系列通信卫星、2颗风云二号气象卫星、用长征三号甲火箭发射了1颗实践四号探测卫星、2两颗东方红三号通信卫星、1颗中星22号通信卫星,这些卫星中有10颗进入静止轨道预定位置。发射这类卫星,星上要携带远地点发动机,运载火箭把卫星送入大椭圆同步转移轨道后,地面再发出指令,让星上远地点发动机点火,将卫星移入静止轨道。

极地轨道

就卫星轨道类型来说,还有一种轨道倾角为90度的极地轨道。它是因轨道平面通过地球南北两极而得名。在这种轨道上运行的卫星可以飞经地球上任何地区上空。中国虽未研制运行于此类轨道的卫星,但发射过此类轨道的卫星。长征二号丙改进型火箭以1箭双星的方式6次从太原起飞,把12颗美国铱星送入太空,就属于这种发射方式。

太阳同步轨道

由于地球扁率(地球不是圆球形,而是在赤道部分隆起),卫星轨道平面绕地球自转轴旋转。如果卫星轨道平面绕地球自转轴的旋转方向和角速度与地球绕太阳公转的方向和平均角速度相同,则这种卫星轨道叫太阳同步轨道。气象卫星、资源卫星等对地观测卫星都采用这种轨道,其优点是不仅可以使卫星能俯瞰包括地球两极地区在内的整个地球表面,而且在卫星每次经过特定地区时,其光照条件基本不变,从而有利于获取高质量地面目标的图像。

人造地球卫星有的运行在圆轨道,有的运行在椭圆轨道:它们还有高低之分:距地面200~2000km的轨道叫低轨道,距地面2000~20000km的轨道叫中轨道,距地面20000km以上的轨道叫高轨道,为了完成预定任务,不同的卫星在轨道形状、高低等方面有明显差异。例如,采用圆形轨道有同地球表面保持等距离的优点,所以用于观察地球、通信广播、导航定位和大地测量的卫星常采用这种轨道;但也有一些卫星采用椭圆轨道,例如,俄罗斯的“闪电”通信卫星运行在大椭圆轨道,这是因为俄罗斯国土纬度较高,如果使用地球静止轨道卫星不能覆盖高纬度地区,而“闪电”通信卫星轨道的远地点高度为40000km,近地点在470km,倾角63°,即远地点在北半球上空。这样卫星可缓慢经过俄罗斯境内,与地面控制站失去联系的时间很短。不过,为了保证提供俄罗斯境内不间断通信,需要多颗“闪电”卫星协作。另外,如果是为了科学研究(研究地球不同高度上磁场的强度,大气压力、温度、密度,宇宙空间辐射的强度分布),使探测范围更大些,可以选择扁的轨道。我国1971年3月3日发射的实践-1科学卫星,其轨道的近地点是266km,远地点是l826km。

卫星产业

世界之最

前苏联第一颗人造地球卫星的发射成功,揭开了人类向太空进军的序幕,大大激发了世界各国研制和发射卫星的热情。前苏联发射的第一颗人造地球卫星的主要任务并非科学考察,而是进行政治宣传。第一颗卫星上天是历史上最引人注目的科学事件。

人造卫星1号内部 前苏联发射的第一颗人造地球卫星的多级火箭先到达900多公里的高度,然后以每小时约28800公里的速度与地球平行飞行,最后卫星脱离停止燃烧的最后一级火箭,在距地球约880公里的上空建立自己的运行轨道。人造卫星每96.2分钟绕地球一圈。由于地球的自转,人造卫星能飞越各大洲以及所有有人居住区。美国于1958年1月31日成功地发射了第一颗“探险者”-1号人造卫星。该星重8.22公斤,锥顶圆柱形,高203.2厘米,直径15.2厘米,沿近地点360.4公里、远地点2531公里的椭圆轨道绕地球运行,轨道倾角33.34”,运行周期114.8分钟。发射“探险者”-1号的运载火箭是“丘辟特”℃四级运载火箭。

法国于1965年11月26日成功地发射了第一颗“试验卫星”-1(A-l)号人造卫星。该星重约42公斤,运行周期108.61分钟,沿近地点526.24公里、远地点1808.85公里的椭圆轨道运行,轨道倾角34。24”。发射A1卫星的运载火箭为“钻石,tA号三级火箭,其全长18.7米,直径1.4米,起飞重量约18吨。

日本于1970年2月11日成功地发射了第一颗人造卫星“大隅”号。该星重约9.4公斤,轨道倾角31.07”,近地点339公里,远地点5138公里,运行周期144.2分钟。发射“大隅”号卫星的运载火箭为“兰达”-45四级固体火箭,火箭全长16.5米,直径0.74米,起飞重量9.4吨。第一级由主发动机和两个助推器组成,推力分别为37吨和26吨;第二级推力为11.8吨;第三、四级推力分别为6.5吨和1吨。

人造地球卫星 中国于1970年4月24日成功地发射了第一颗人造卫星。是日,东方红1号卫星在长征1号运载火箭的携带下从酒泉卫星发射中心起飞升空,进入到预定的运行轨道。这一成就标志着中国成为继苏联、美国、法国和日本之后世界上第五个能自行研制发射人造卫星的国家。该星直径约1米,重173公斤,沿近地点439公里、远地点2384公里的椭圆轨道绕地球运行,轨道倾角68,5”,运行周期114分钟。发射“东方红”1号卫星的远载火箭为“长征”1号三级运载火箭,火箭全长29,45米,直径2.25米,起飞重量81.6吨,发射推力112吨。

英国于1971年10月28日成功地发射了第一颗人造卫星“普罗斯帕罗”号,发射地点位于澳大利亚的武默拉(Woomera)火箭发射场,运载火箭为英国的黑箭运载火箭。近地点537公里,远地点1593公里。该星重66公斤(145磅),主要任务是试验各种技术新发明,例如试验一种新的遥测系统和太阳能电池组。它还携带微流星探测器,用以测量地球上层大气中这种宇宙尘高速粒子的密度。

除上述国家外加拿大、意大利、澳大利亚、德国、荷兰、西班牙、印度和印度尼西亚等也在准备自行发射或已经委托别国发射了人造卫星。

1957年10月4日,苏联发射了第一颗人造地球卫星。这一事件具有划时代的意义,它宣告人类已经进入空间时代。第一颗人造地球卫星呈球形,直径58厘米,重83.6公斤。它沿着椭圆轨道飞行,每96分钟环绕地球一圈。人造地球卫星内带着一台无线电发报机,不停地向地球发出“滴—滴—滴”的信号。一些人围着收音机。侧耳倾听着初次来自太空的声音。另一些人则仰望天空,试图用肉眼在夜晚搜索人造地球卫星明亮的轨迹。但是,当时认识很少有人了解人造地球卫星是载人宇宙飞船的前导,科学家正在加紧准备载人空间飞行。一个月后,1957年11月3日,苏联又发射了第二颗人造地球卫星,它的重量一下增加了5倍多,达到508公斤。这颗卫星呈锥形,为了在卫星上节省出位置增设一个密封生物舱,不得不把许多测量仪器移到最末一节火箭上去。在圆柱形的舱内安然静卧着一只名叫“莱卡依”的小狗。小狗身上连接着测量脉搏、呼吸、血压的医学仪器,通过无线电随时把这些数据报告给地面。为了使舱内空气保持新鲜清洁,还安装了空气再生装置和处理粪便的排泄装置。舱内保持一定的温度和湿度,使小狗感到舒适。另外还有一套自供食装置,一天三次定时点亮信号灯,通知莱依卡用餐。使人遗憾的是,由于当时技术水平的限制,这颗卫星无法收回,试验狗在卫星生物舱内生活了一个星期,完成全部实验任务后,只好让它服毒自杀,成为宇航飞行中的第一个牺牲者。

发射国家

人造地球卫星 截止20世纪末,全球只有少数国家进入航天俱乐部——具有独立卫星发射能力。这些国家和地区包括(截止2007年2月):独联体国家/前苏联、美国、法国、日本、中国、英国、印度和以色列。伊拉克和朝鲜的发射并未被承认。巴西在1997、1999和2003年进行了3次发射尝试,但均未成功。直到今天仍有少数国家依旧尝试进入航天俱乐部。早期意大利和哈萨克斯坦都具备火箭和卫星研发技术条件,并且都有火箭发射场(圣马科意海上平台和拜科努尔发射场,主要为美国和俄国担负发射任务)。乌克兰具备火箭制造能力但却不具备发射场等条件。多国合作的欧洲空间局ESA,以及私有的海上发射公司等公司也被认为是航天俱乐部的成员。

1957年10月4日,世界上第一个人造地球卫星已经制成由苏联发射成功。运送卫星的火箭使卫星获得了每秒八千公尺左右的必要的轨道速度。据计算,这个卫星在离地面900公里的高空运行;它每转一整周的时间是1小时35分钟,它的运行轨道和赤道平面之间所形成的倾斜角是65度。人造卫星是一个球形体,直径58公分,重83.6公斤。内装两部不断放射无线电信号的无线电发报机。其频率分别为20.005和40.002兆赫(波长分别为15和7.5公尺左右)。信号采用电报讯号的形式,每个信号持续时间约0.3秒。间歇时间与此相同。早在19世纪末,俄国杰出的科学家齐奥尔科夫斯基就已经在他的著作中第一次科学地论证了借助火箭实现宇宙飞行的可能性。